Immunity and the Vaccine Development Process: Preventing the Contraction and Limiting the Spread of Viruses

HOSA Health Education

Riya Jain and Nivedha Krishnan

Target Audience: Middle and high schoolers (7th - 12th grade)

Number of Participants: 35-40 students

James B Conant High School HOSA Chapter

State/Country: Illinois, The United States of America

Division: Secondary

Chapter Number: 20115

Lesson Overview

Lesson Objective: Our aim is to inform students about the vaccine development process, especially in regards to testing and ensuring safety. Furthermore, we want to foster a deeper understanding of the immune system and how it interacts with a vaccine. As part of this, we aim to inculcate healthy practices in warding off pathogens, something especially important in the current pandemic.

Curriculum Overview: By the end of our lesson, students will be able to...

- List/explain the basic strategies in regards to vaccine creation
- List/explain the general stages of the vaccine development process
- Identify the major components present in the human immune system
- Explain how parts of the immune system work together to protect against pathogens
- Explain how vaccines bolster the immune response to viruses
- Explain, at a brief level, what herd immunity is and how vaccines help foster it
- Explain, specifically, the type of vaccine being developed to immunize individuals against COVID-19
- List the key strategies needed to stay safe and healthy during the coronavirus pandemic
- Discuss, at a deeper level, potential societal, legislative, and community-based changes that can be made to keep everyone safe during the pandemic and minimize spread

Lesson Goals: In this lesson, we will be covering the following topics...

- The differences in types of vaccines
- The vaccine creation, development, and testing process
- How the human immune system works
- How vaccines support the immune system in fighting viruses
- The importance of herd immunity in overcoming a pandemic
- Key safety strategies to avoid spreading COVID until the vaccine becomes widely accessible

Mode of Instruction: This lesson took place over a Zoom call with 22 attendees in order to maximize the safety and accessibility of the information provided.

Materials:

- Zoom Meetings
- "Immunity and the Vaccine Development Process" Google Slides presentation

- Interactive online simulations from the History of Vaccines website to supplement the lesson through visual learning
 - How Vaccines Work
 - How Vaccines are Made
 - Types of Vaccines
 - Herd Immunity
- Gimkit question deck on COVID-19 Vaccine and general immunology
- "Thinking Deeper Questions" open-ended discussion prompts for students to answer in small group breakout rooms
- "Bell Ringer Ending Quiz" Multiple choice end-of-lesson quiz to assess the level of understanding of materials

Instruction Plan: Approximately a one-hour lesson

- Introduction & Ice Breakers (5 minutes):
 - Introduce ourselves and allow the audience to get to know each other through quick ice breaker questions.
- Immunity and Vaccine Development Presentation (20 minutes):
 - Go through Google Slides presentation to cover all the main topics regarding immunity and vaccines.
- Interactive Online Simulations (5 minutes):
 - Go through the four interactive online simulations (over screenshare, but provide links to the audience as well).
 - How Vaccines Work, How Vaccines are Made, Types of Vaccines, Herd Immunity
- Competitive Group Game (5 minutes):
 - Engage audiences in an educational Gimkit game, allowing them to participate in friendly competition while revising information covered in presentation
- Thinking Deeper Discussion (12 minutes):
 - Introduce the open ended discussion prompts and allow students to share their thoughts in 3-4 person breakout rooms.
- Bell Ringer Ending Quiz (8 minutes):
 - Allow students to take Google Forms quiz to assess level of understanding
- **Conclusion** (5 minutes):
 - Wrap up the lesson by answering questions and quickly reviewing the concepts we talked about and giving students the chance to correct their answers

Background/Supporting Information

Immunity, and The Role of Vaccines

The objective of the immune system integral to the survival of all human beings: protecting the human body from invasive microorganisms (e.g. bacteria, fungi, viruses, and toxins). It is composed of different organs (such as tonsils, thymus, and lymph nodes) throughout the entire body, as well as cells that operate in blood and practically every part of the body.When a child is born, they're born with an innate immunity. Innate immunity refers to the immune system that the child inherits from his or her mother, through gestation and the umbilical cord. This serves as the line of first response; it patrols the body. The cells used by the innate immune system are known as phagocytes.

The body also gains immunity throughout life. Known as the adaptive or acquired immune system, this is the system that produces antibodies to fight infections. The adaptive immune system employs B and T cells to fight infection, and B lymphocytes are responsible for the development of specific antibodies after the body has been exposed to a foreign agent. This is where vaccines come into play to help the immune system. In general, vaccines cause an imitation infection, allowing the body to produce specific antibodies for the virus or toxin; the imitation infection is weaker than an actual infection so most people don't experience any real symptoms after getting a vaccine administered. Once the imitation infection is over, the body still has a provision of the antibodies for that specific infection, making it easy to fight in the future.

Vaccines: The Basics

There are three main strategies for vaccines.

Strategy 1: Live Attenuated Vaccines

Weakening the virus is one of the most popular methods used, and many vaccines such as the measles, mumps, and rubella vaccines employ this strategy. Viruses can only spread and cause disease within the body by reproducing thousands of times, so weakening the reproductive capabilities of the virus allows it to reproduce only a handful of times. This means that the body can quickly and effectively fight this virus while training the B-cells to remember *how* to fight the virus, preventing the average person from contracting the vaccinated disease again.

Strategy 2: Inactivated Vaccines

Another popular method is to inactivate the virus altogether. This eliminates any possibility of the virus reproducing, but the host body still stores 'memory' of the virus cells, which can be used to fight the illness. This method reduces the possibility of contracting the disease entirely and can be safely administered to immunocompromised and immunosuppressed patients. The main drawback, however, is that multiple doses of inactivated virus are often necessary for the same level of immunity. The polio, Hepatitis A, and rabies vaccines employ this method.

Strategy 3: Subunit/Conjugate Vaccines

A third strategy with the best weighted results is using part of the virus for the vaccine. This only works in the cases where immune response is targeted to a specific part of a virus. The benefits of this strategy are that it can be provided to immunosuppressed patients and maintains the lasting immunity of a weakened virus vaccine after just two doses. Vaccines using this strategy include the hepatitis B, shingles, and HPV vaccines.

The COVID-19 Vaccine

Unlike the vaccines described in the sections above, the COVID-19 vaccine currently being developed is an mRNA vaccine, in which the mRNA of the virus is injected into human muscle cells, producing proteins according to the mRNA strand, allowing the body to build immunity to the virus. The main drawback is that nucleic acids are unstable, and easily digested by the body. At this point, three major biotechnology companies have synthesized vaccines with varying characteristics and efficacy rates: Pfizer-BioNTech, Moderna, and Johnson & Johnson. As the vaccine is becoming available to the public, it is important to continue following all social distancing and mask wearing guidelines to ensure your own, along with everyone else's, safety.

The Vaccine Development Process

According to the CDC, there are six general stages of the vaccine development process, some of which have their own substages. The six stages are: (1) Exploratory stage, (2) Pre-clinical stage, (3) Clinical development, (4) Regulatory review and approval, (5) Manufacturing, (6) Quality control.

The Exploratory Stage: This stage focuses on basic laboratory research, and can last up to four years. The scientists are trying to identify natural and synthetic antigens that can help treat or prevent a disease. These antigens are generally derivations of a pathogen. **The Preclinical Stage:** Scientists use tissue culture, cell culture, or animal testing to test the safety of the identified antigens, as well as the ability of the candidate vaccine to compel an immune response; the phase lasts one-two years. This stage allows scientists to predict human response as well as safe starting doses. This stage constitutes a narrowing of the process, as most vaccines don't make it past this point due to lack of safety or immune response.

The Clinical Development Stage: The clinical development stage is actually composed of three sub-phases. The first sub-phase consists of small groups of people receiving the formulated vaccine. The second sub-phase expands the clinical trial, and includes people of the same demographic (age, race, gender) as the intended patients of the vaccine. The third sub-phase is perhaps the widest, where the vaccine is administered to thousands of people and evaluated for safety, effectiveness, and efficacy.

Moreover, many vaccines undergo a fourth phase, where they are put through further ongoing studies to make sure that they are truly safe and effective. The other stages of the development process differ based on the country (vaccines made in the US, for example, are regulated by the FDA) and are more self-explanatory. The manufacturing stage constitutes the mass-production of the vaccine for widespread distribution. The quality control stage is integral to the process, where vaccines undergo a final test to certify their efficacy and safety. <u>Public Health Practices</u>

For most infections, viral and bacterial, the spread of the infection can be contained with good health practices. Many of these practices have become more publicized since the outbreak of the coronavirus. Some of the central tenets of immune practices include: washing your hands thoroughly and often; avoiding touching your face, eyes, and nose with unwashed hands; avoiding close contact in public (six-foot distance from others); wearing a mask to prevent the spread of respiratory diseases; covering coughs & sneezes; and, cleaning and disinfecting frequently-touched surfaces (including phones). Another important public health concept is the concept of herd immunity. Herd immunity requires a sufficient proportion (varying majorities) of the population to be successfully immunized against an infection. Herd immunity allows the vaccinated/immunized majority to protect the unvaccinated minority who perhaps cannot receive the vaccine. For the COVID-19 pandemic, estimates the point of herd immunity to be 70% of the population. This number changes based on the infection though. The steps to achieve this herd immunity involve the creation of an effective COVID-19 vaccine, widespread distribution of the vaccination, and achieving the necessary percentage of immunized people.

Holistic Schedule (preparation to presentation):

Lesson Plan Schedule:

Introductions and Icebreakers: Introduce ourselves, explain what HOSA is and the purpose of our presentation. After that, allow students to get to know each other by having each student introduce themselves with their name and a fun fact about themselves.	5 Min
Main Presentation: Screenshare the Google Slides presentation and discuss the main curriculum topics, including types of vaccines, development process, components of the immune system and how they interact with vaccines, herd immunity, and general safety precautions during a pandemic.	20 Min
Interactive Visual Simulations: Screenshare and run through the Herd Immunity, How Vaccines Work, and How Vaccines are Made simulations found on the History of Vaccines website. Allow students to access the simulations themselves by providing the links through the Zoom Chat.	5 Min
Competitive Group Game: Screenshare and engage audience in a 12 question multiple-choice Gimkit game in order to enhance student understanding of vaccines, immunology, and public health. Students will have the opportunity to engage in friendly competition with this online educator game.	5 Min
Thinking Deeper Discussion Questions: Put students into breakout rooms of 3-4 people and provide them with several open ended discussion questions related to the content. We will go to each breakout room to monitor/supplement discussion if needed. After, students share their ideas in the main room.	12 Min
End of Lesson Multiple Choice Questions: Answer any remaining questions that students have and then provide a link through the Zoom Chat to a Google Forms quiz to help us assess how well the audience was able to absorb the information and content taught.	8 Min
Wrap Up: Thank everyone for coming, answer any final questions, and quickly go through everything that we covered in the session; essentially, summarizing all the key takeaways.	5 Min

Presentation at cross-curricular vaccine education initiative:

As a part of our health education campaign, we took our outreach to the next level by participating in a cross-curricular vaccine education demonstration at our school. We combined the parts of our curriculum focused on vaccinations and public health in order to present to 1000+ students in a course of two days on what herd immunity is, why it's important, and how we can reach that standard as a society. We were able to impact a much larger magnitude of the student population, and further our goal of increasing public safety in our community.

For this initiative, we used a condensed version of the presentation displayed below. <u>Here is a</u> <u>link</u> to the cross-curricular vaccine presentation.

Materials

Immunity and the Vaccines Development Slideshow - (link to full presentation)

01. THE IMMUNE SYSTEM How it works, and how vaccines help our immune systems

03. THE DEVELOPMENT PROCESS How vaccines are developed.

02. VACCINES: THE BASICS How vaccines work, and the different categories.

04. GENERAL PUBLIC HEALTH Herd immunity and general public safety practices.

TWO PARTS OF THE IMMUNE SYSTEM

INNATE IMMUNITY

Rapid Response System Patrols the body for invaders Inherited, active from birth Agents: Phagocytes

Two glands in the back of

Two lobes that join in front of

trachea, behind breastbone

the nasal passage

THYMUS -

ADAPTIVE IMMUNITY

Helps innate system Produces specific antibodies Acquired throughout lifetime Agents: B and T cells

TONSILS Two oval masses in the back of the throat

> SPLEEN Fist-sized organ in the abdominal cavity

VACCINES AND THE IMMUNE SYSTEM

SUPPLY

ract the virus during this tin

he immune system produce T-lymphocytes and antibodies

supply

of antibo

Jain & Krishnan, Health Education 10

PROTECTION MEASURES FOR PEOPLE THAT ARE IN OR VISITED INFECTED AREAS

WEAKENED VIRUS

Most common type of vaccination strategy Injecting a virus with weaker reproductive capacity Allows body to store memory of virus Measies, Mumps, Rubella, Rotavirus vaccines

PARTS OF VIRUS

Vaccine fashioned with part of a virus Works when immune response is specifically targeted Body stores memory, works on immunosuppressed Hepatitis B, Shingles, HPV vaccines

INACTIVATED VIRUS

Injecting a completely inactivated virus Allows body to store memory, may require multiple reps Can be safely given to immunosuppressed patients Polio, Hepatitis A, Rabies vaccines

BACTERIAL VACCINES

Applies to bacterial, not viral, infections Option 1 - inject inactivated toxins called toxolds Option 2 - involves a bacterial polysaccharide coat Works for immunosuppressed, requires multiple doses

DR. CHENG:

"Nucleic acid vaccines (either DNA or RNA) are quite new. These DNA or RNA molecules will direct the synthesis of pathogen specific proteins and stimulate an immune response (production of antibodies) in the host cell. It's very safe; the main drawback is that nucleic acids are unstable and can be digested by human body before the protein is produced."

A MAIN TYPES OF VACCINES

*eight months

mRNA Vaccines

Inject the mRNA of the virus into muscle cells

Muscle cells produce virus, or surface spike protein for COVID

Advantages - eliminate risk of preexisting immunity

"COVID-19 vaccine is an mRNA vaccine. To design the mRNA vaccine, scientist obtain spikes from COVID-19, sequence the protein (arrangement of amino acid in the protein), predict the mRNA from the protein sequence." The 2 currently FDA-approved COVID-19 vaccines are the Pfizer-BioNTech & Moderna vaccines.

Jain & Krishnan, Health Education 11

Why is Herd Immunity difficult to achieve?

Viruses mutate, often. Especially viruses like the flu and COVID-19. RNA viruses are more prone to mutation because of how they reproduce.

PUBLIC IMMUNITY

Herd Immunity to a virus is

difficult to ensure when the

inoculated against multiple

virus keeps changing.

The percentage of those

strains is much lower.

VIRUS MUTATION IMPACTS

VACCINATION

the flu vaccine every season

When RNA viruses mutate, previous vaccines no longer protect against the new strains Why it's so important to get

WHEN IN DOUBT, SIX FEET APART!

REFERENCES

- https://www.publichealth.org/public-awareness/understanding-vaccines/vaccines-work/
- https://www.chop.edu/centers-programs/vaccine-education-center/human-immune-system/parts-
- https://www.cdc.gov/vaccines/basics/test-approve.htm]
- https://www.mayoclinic.org/diseases-conditions/coronavirus/in-depth/herd-immunity-and-coron avirus/art-20486.808
- https://www.historyofvaccines.org/content/herd-immunity-0
- https://www.historyofvaccines.org/content/how-vaccines-work
- https://www.historyofvaccines.org/content/how-vaccines-are-made
- https://www.historyofvaccines.org/content/types-vaccines

GR.* ***** 3.8 Pay attention to local Seek medical attention if need be, and stay d state health home if you are sick! regulations.

PROTECTING YOURSELF AND PREVENTING THE SPREAD

Ê

Two-pronged impact →

Virus Mutation

Viruses use RNA Polymerase to

mutations/new strains of virus.

DNA viruses.

All RNA viruses mutate more than

'proofread', and this causes inherent

catalyze reproduction; cannot

Wash your hands thoroughly with soap and water.

Cover your mouth & nose when you cough or sneeze.

OF INFECTIOUS DISEASE Vaccines and immunity

aren't everything;

preventing the spread of

3

Minimize touching

face, nose, mouth, cars.

Interactive Gimkit

The COVID-19 vaccine is being administered to this group first.	The COVID-19 vaccine contains mRNA molecules that encode	
Healthcare workers and the elderly College students and teachers	The instructions for building the virus's spike proteins The instructions that allow the virus to maintain its structure	
Infants and newborns	The instructions that help the virus reproduce inside the host	
Which of the following cells CREATES antibodies?	Is it necessary to take the flu vaccine every flu season?	
B-cells	Yes - the flu virus easily mutates, so the body needs to have antibodies that protect itself from the latest strain of the virus	
T-cells	Yes - the immune system tends to lose memory over time and needs to be "refreshed"	
Phagocytes	No - the immune system retains its memory, so taking the vaccine again is pointless since it's the same virus	
Antigen presenting cells	No - the flu virus rarely ever mutates, so there's no danger with not taking the new vaccine	
The polio, Hepatitis A, and rabies vaccines are all inactivated vaccines, which means that Any possibility of the virus reproducing inside the host body is eliminated	According to experts, what percentage of the US population has to be immunized to reach herd immunity?	
Only a part of the virus is injected into the host body	>70% >60% >80% >65% the Which of the following stages of vaccine development utilizes tissue and cell cultures? Pre-clinical stage	
The reproductive capacity of the virus is slightly weakened before injection into host body		
The host body is unable to store memory based on the vaccine		
The hepatitis B, shingles, and HPV vaccines are all vaccines, in which a part of the virus is injected. Suburit vaccines		
Inactivated vaccines	Manufacturing	
Nucleic acid vaccines	Exploratory stage	
Which of the following stages of vaccine development deals with testing the vacc humans? Clinical development stage Exploratory stage	cine on The COVID vaccine uses which of the following vaccine technologies? Injecting mRNA of the virus Injecting a 'weakened' form of the virus Injecting a completely inactivated virus	
Pre-clinical stage	injecting an bacterial polysaccharide coat	
Regulatory review and approval		

Which of the following is NOT a characteristic of the innate immune system?
Produces antibodies to fight against pathogens
Inherited from mother
Employs immune cells called phagocytes
Serves as the "first line of defense" against invaders

For both Moderna and Pfizer, how many injections of the vaccine are needed for full effectiveness?

Thinking Deeper Questions

1. Using the main characteristics of how vaccines work, describe how the overuse of vaccines can be detrimental towards overall public health in the future.

3

4

- 2. Describe how the proper implementation of and overarching access to vaccines can promote a healthier and safer population.
- 3. Construct an analogy to explain the role and relationship between phagocytes and B & T

cells.

- 4. What would be potential consequences of a society not being able to achieve the minimum threshold for herd immunity?
- 5. How can we help convince the greater population of the safety & effectiveness of the upcoming COVID-19 vaccine?
- 6. What are potential changes we can make, either legislative or community-based, to ensure that more individuals follow mask-wearing and social distancing guidelines?

Vaccine Development and Immunity Interactive Simulations

Interview Transcripts with Dr. Cheng

Could you tell us more about the biological concepts behind mRNA vaccines, as well as why they would be preferred over traditional vaccines?

Vaccine can be whole vaccine (the whole body of the inactivated bacterial cell, or virus) or subunit (part of the bacterial, or virus) such as protein (spikes) or polysaccharide from the surface of COVID-19.

Nucleic acid vaccine (either DNA or RNA) is quite new. It is expected that these DNA or RNA molecule will direct the synthesis of pathogen specific protein and stimulate immune response (production of antibodies) in host cells. It is very safe; the drawback is that nucleic acids are unstable and can be digested by human body before the protein is produced.

COVID-19 vaccine is mRNA vaccine. To design mRNA vaccine, scientist obtain spikes from COVID-19, sequence the protein (arrangement of amino acid in the protein), predict the mRNA from the protein sequence. This process (from protein to mRNA) is known as reverse genetics (traditional genetics starts from DNA -mRNA-protein), mRNA molecule can then be synthesized and used as vaccine.

When mRNA (vaccine) is injected, it will be translated into viral protein in human body. This will stimulate the production of antibodies against virus protein. When human is exposed to the real COVID-19 virus later on, these antibodies will bind to the spikes of the viruses and block them from further damaging the host colls. It is important to know that vaccine is usually designed based on the surface marker, because this is the first molecule recognized by host cells.

mRNA vaccine is safe to use compared to whole vaccine. The adverse reaction to vaccine is usually not the mRNA molecule, it is usually to the adjuvant (the chemicals that help to deliver the vaccine). 2. Focusing on prevalent viral diseases, such as the flu, the common cold, or COVID-19, why do viruses mutate quickly, and what contributes to the variation in the rate of mutation? Also, what would it mean for a virus to become vaccine-resistant? Is that even possible?

Flu and COVID-19 viruses are RNA virus. In other words, the genome (the brain) of the virus is RNA molecules. To reproduce more viral particles, virus will use the machinery of the host cells to replicate their RNA molecules. This process is catalyzed by the enzyme called RNA polymerase. RNA polymerase does not have the function of "proof reading", so it can easily make mistake (mutate) during RNA replication. For example, A is supposed to pair with U, but a C is incorporated in the RNA molecule. RNA polymerase will not recognize this mistake, nor it will correct it.

All RNA viruses tend to mutate more than DNA virus.

Common cold is caused by a whole spectrum of viruses, including RNA virus, thus, they also tend to mutate.

4. At a molecular level, how exactly do B- and T- cells work together to create antibodies? Moreover, where and how are they able to store such detailed information about different types of pathogens? Is it a part of their DNA?

B cells and T cells are different types of immune cells and they have different function.

The main function of B cells to produce antibodies that help to eliminate pathogens. That is how vaccine works. Vaccines educate B cells to produce antibody and block the infection for the "real pathogens" when they are encountered.

T cells are different. They DO NOT produce antibody. There are different types of T cells, for example, cytotoxic T cells (Tc) produce enzymes that will kill virus infected cells or cancer cell.

Both B cells and T cells have memory, they stored the information of pathogen by memorizing the surface molecules such as proteins or polysaccharide of the pathogen, NOT nucleic acid of the pathogen. Rembert, viral nucleic acids are covered by protein coat, they cannot be seen directly by the host cells.

Vaccines and Immunology Multiple Choice Quiz

Which of the following vaccine types is most commonly used in vaccine 2 points development? *	Select all of the activities that should be AVOIDED in a pandemic: * 3 points Wearing masks in public settings
 Injecting a weakened virus Injecting part of a virus Injecting a completely inactivated virus Injecting toxoids to fight bacterial toxins 	Going to parties with a large crowd Taking your mask down in a big group of people Washing your hands frequently Touching your face a lot, especially your eyes, mouth, nose, and ears Keeping a bottle of hand sanitizer at all times Keeping a distance of 6 feet between you and everyone else

The COVID-19 virus injects which of the following substances into the 2 points patient? *	Select all of the organs that are associated with the body's immune response. *
Bacterial polysaccharide coating of the COVID-19 virus mRNA (or messenger RNA) of the COVID-19 virus Completely inactivated strand of the COVID-19 virus Toxoids that fights against the toxins released by the COVID-19 virus	Lungs Tonsils Adenoids Liver Pharynx Spleen
Which of the following correctly defines herd immunity? * 2 poets Herd immunity is when a virus, bacterial strand, or other pathogen becomes resistant to certain human-developed drugs or vaccines due to rapid genetic evolution. This resistance allows disease to continue to be present, even after the intake drugs or vaccines.	Which of the following correctly describes the differences between I points
Herd immunity is the widespread, instantaneous implementation of an antibiotic or vaccine, effectively killing off 100% of the pathogen, ensuring that there is no possibility for the virus to reproduce, and making the whole population completely immune to the disease.	consistent of the system part of the system part of the system of t
severely limiting the spread of that disease. Herd immunity is when, during a pandemic, everyone completely avoids contact with the disease, meaning that no one is exposed at any point in time. Due to this lack of contact and spread, the population is quickly and efficiently "level off the curve" and resume normal activity.	 The innate immune system employs B and T cells while the adaptive immune system employs phagocytes to protect the body from invaders. Innate immunity includes everything a person's immunity system already has, while adaptive immunity includes all types of drugs, vaccines, and other treatments that help fight the disease.

Results

Trial Lesson Run #1 - Held over Discord

Main Takeaways:

- Increase audience involvement and interaction, in the form of games and engaging activities
- Spend less time on presentation and more time on discussion
- Take breaks throughout the lesson to answer questions (not just at the end)

Lesson Run #2 - Held over Zoom

(We got most of them to turn their cameras on and smile for the picture during a break!)

Sample Student Responses (Anonymous) from Thinking Deeper Discussion Questions

Using the main characteristics of how vaccines work, describe how the overuse of vaccines can be detrimental towards overall public health in the future.

"When vaccines lose their effectiveness, then the entire public does not have herd immunity and this could impact everyone, including those who aren't able to be vaccinated in the first place. They would lose effectiveness because an overuse of vaccines could cause super-evolving viruses, which evolve too quickly to have a proper vaccine. There's also the possibility of vaccine-resistant viruses, just like there are antibiotic-resistant bacteria."

Describe how the proper implementation of and overarching access to vaccines can promote a healthier and safer population.

"The proper implementation of vaccines can help immunize a greater population of people, which would lead to greater benefits both for general wellbeing and increased life expectancy. Distributing a surplus of vaccines allows people that need it but can't afford it to access it, which stops the spread of the disease caused by the virus at hand."

Come up with an analogy to explain the role and relationship between phagocytes and B & T cells.

"We thought of a security system. The security camera is the sensor, which can detect when something looks off. However, the camera itself doesn't change its actions based on what it senses. The person watching the feed behind the camera is the one who might signal guards or ring an alarm. Phagocytes represent the camera because they are always looking for invaders while B & T cells represent the person because they have a specific immune response based on the type of invader."

What would be potential consequences of a society not being able to achieve the minimum threshold for herd immunity?

"The consequences of not being able to reach the minimum threshold for herd immunity would be a mass spread of the disease. If not enough people are vaccinated, the disease will continue to spread and affect all vulnerable people, while people are still under the impression that they are safe."

How can we help convince the greater population of the safety & effectiveness of the upcoming

COVID-19 vaccine?

"The best route is probably education, just explaining how the vaccine will work together with the immune system to protect people against COVID-19. It's also important to show people that to some extent, it's a social responsibility to take the vaccine, since we will need to reach herd immunity."

What are potential changes we can make, either legislative or community-based, to ensure that more individuals follow mask-wearing and social distancing guidelines?

"One potential change for communities is strict mask mandates with fines. While this may be highly controversial, it has proven to be effective in many countries, and doing so will reduce the spread of COVID-19 and reduce the drastic increase in cases. These mandates should be accompanied with fines to ensure individuals follow the law, causing most to wear a mask."

Multiple Choice Quiz Results

Taken at the end of the lesson - following presentation, simulations, discussion, Gimkit, and opportunities for Q/A

Which of the following correctly defines herd immunity?

Which of the following correctly describes the differences between acquired/adaptive and innate immunity?

Select all of the activities that should be AVOIDED in a pandemic:

Select all of the organs that are associated with the body's immune response.

Which of the following vaccine types is most commonly used in vaccine development?

<u>References</u>

- Corum, J., Zimmer, Z. (2021, Jan 21). *How moderna's vaccine works*. The New York Times. Retrieved from https://www.nytimes.com/interactive/2020/health/moderna-covid-19-vaccine.html.
- National Center for Immunization and Respiratory Diseases. (2014, May 1). *Vaccine testing and the approval process*. Centers for Disease Control and Prevention. Retrieved from https://www.cdc.gov/vaccines/basics/test-approve.html
- National Institute of Allergy and Infectious Diseases. (2018, July). *Understanding how vaccines work* [Fact sheet]. Centers for Disease Control and Prevention. Retrieved from https://www.cdc.gov/vaccines/hcp/conversations/downloads/vacsafe-understand-color-of fice.pdf
- The Children's Hospital of Philadelphia. (2019, April 22). *Parts of the immune system*. Children's Hospital of Philadelphia. Retrieved from https://www.chop.edu/centers-programs/vaccine-education-center/human-immune-syste m/parts-immune-system
- The College of Physicians of Philadelphia. (2018, January 17). *Vaccine development, testing, and regulation*. History of Vaccines. Retrieved from https://www.historyofvaccines.org/index.php/content/articles/vaccine-development-testin g-and-regulation
- The College of Physicians of Philadelphia. (2018, January 17). *Herd immunity*. History of Vaccines. Retrieved from https://www.historyofvaccines.org/content/herd-immunity-0
- The College of Physicians of Philadelphia. (2018, January 17). *How vaccines are made*. History of Vaccines. Retrieved November 28, 2020, from https://www.historyofvaccines.org/content/how-vaccines-are-made
- The College of Physicians of Philadelphia. (2018, January 17). *How vaccines work*. History of Vaccines. Retrieved from https://www.historyofvaccines.org/content/how-vaccines-work
- The College of Physicians of Philadelphia. (2018, January 17). *Types of vaccines*. History of Vaccines. Retrieved from https://www.historyofvaccines.org/content/types-vaccines